本地部署GPT4All免费使用且具有隐私意识的聊天机器人,无需 GPU 或互联网

GPT4All

一个免费使用、本地运行、具有隐私意识的聊天机器人。无需 GPU 或互联网。

下载桌面聊天客户端

1.Windows 版:【**点击下载**】

2.MacOS版:【**点击下载**】

3.Ubuntu版:【**点击下载**】

4.Github开源地址:【**链接直达**】

5.本地模型下载:【**点击前往**】

6.模型推荐:Mistral OpenOrca 【点击下载】或者软件内下载,在GPU的加速下,速度非常快!

模型下载:

大小:3.83 GB内存:8GB

密斯特拉尔-7b-openorca.Q4_0.gguf

最佳整体快速聊天模型

  • 快速响应
  • 基于聊天的模型
  • 由 Mistral AI 训练
  • 在通过Nomic Atlas管理的 OpenOrca 数据集上进行了微调
  • 已获得商业用途许可

下载

大小:3.83 GB内存:8GB

米斯特拉尔-7b-指令-v0.1.Q4_0.gguf

最佳整体快速指令跟随模型

  • 快速响应
  • 由 Mistral AI 训练
  • 未经审查
  • 已获得商业用途许可

下载

大小:3.92 GB内存:8GB

gpt4all-falcon-q4_0.gguf

模型速度非常快,质量很好

  • 最快的响应
  • 基于指令
  • 由TII培训
  • 由 Nomic AI 微调
  • 已获得商业用途许可

下载

大小:3.56 GB内存:8GB

orca-2-7b.Q4_0.gguf

  • 基于指令
  • 由微软培训
  • 不能用于商业用途

下载

大小:6.86 GB内存:16GB

orca-2-13b.Q4_0.gguf

  • 基于指令
  • 由微软培训
  • 不能用于商业用途

下载

大小:6.86 GB内存:16GB

Wizardlm-13b-v1.2.Q4_0.gguf

最佳整体较大型号

  • 基于指令
  • 给出很长的回复
  • 仅用 1k 高质量数据进行微调
  • 微软和北京大学培训
  • 不能用于商业用途

下载

大小:6.86 GB内存:16GB

努斯-爱马仕-llama2-13b.Q4_0.gguf

非常好的模型

  • 基于指令
  • 给出很长的回应
  • 包含 300,000 条未经审查的说明
  • 由 Nous Research 培训
  • 不能用于商业用途

下载

大小:6.86 GB内存:16GB

gpt4all-13b-snoozy-q4_0.gguf

整体模型非常好

  • 基于指令
  • 基于与 Groovy 相同的数据集
  • 比 Groovy 慢,但响应质量更高
  • 由 Nomic AI 培训
  • 不能用于商业用途

下载

大小:3.54 GB内存:8GB

mpt-7b-聊天-合并-q4_0.gguf

模型不错,架构新颖

  • 快速响应
  • 基于聊天
  • 由 Mosaic ML 训练
  • 不能用于商业用途

下载

大小:1.84 GB内存:4GB

虎鲸-mini-3b-gguf2-q4_0.gguf

具有新颖数据集的新模型的小版本

  • 基于指令
  • 解释调整后的数据集
  • Orca 研究论文数据集构建方法
  • 不能用于商业用途

下载

大小:1.74 GB内存:4GB

重复代码-v1_5-3b-q4_0.gguf

在堆栈的子集上进行训练

  • 基于代码完成
  • 已获得商业用途许可
  • 警告:不适用于聊天 GUI

下载

大小:8.37 GB内存:4GB

starcoder-q4_0.gguf

在堆栈的子集上进行训练

  • 基于代码完成
  • 警告:不适用于聊天 GUI

下载

大小:3.56 GB内存:8GB

裂痕编码器-v0-7b-q4_0.gguf

接受过 Python 和 TypeScript 集合培训

  • 基于代码完成
  • 警告:不适用于聊天 GUI

下载

大小:0.04 GB内存:1 GB

全MiniLM-L6-v2-f16.gguf

LocalDocs 文本嵌入模型

  • LocalDocs 功能所必需的
  • 用于检索增强生成(RAG)

下载

大小:3.83 GB内存:8GB

em_german_mistral_v01.Q4_0.gguf

基于 Mistral 的德语应用模型

  • 快速响应
  • 基于聊天的模型
  • 由埃拉米德培训
  • 对德语指令和聊天数据进行了微调
  • 已获得商业用途许可

下载